Chapter 9

Security Models and Practice

Contents
9.1 Policy, Models,and Trust 446
9.1.1 SecurityPolicy 446
9.1.2 SecurityModels 447
9.1.3 TrustManagement 448
9.2 Access-ControlModels 450
9.2.1 The Bell-LaPadulaModel 450
9.2.2 Other Access-Control Models 454
9.2.3 Role-Based Access Control 456
9.3 Security Standards and Evaluation 460
9.3.1 Orange Book and Common Criteria 460
9.3.2 Government Regulations and Standards 462
9.4 Software Vulnerability Assessment 464
9.4.1 Static and Dynamic Analysis 465
9.4.2 Exploit Development and Vulnerability Disclosure . 468
9.5 Administration and Auditing 470
9.5.1 System Administration 470
9.5.2 Network Auditing and Penetration Testing 473
96 Kerberos, 475
9.6.1 Kerberos Ticketsand Servers 475
9.6.2 Kerberos Authentication 476
9.7 SecureStoraget 479
9.7.1 FileEncryption 479
9.7.2 DiskEncryption. L. 481
9.7.3 Trusted Platform Module 482
9.8 EXercises v v v i i i e e e e 484

446

Chapter 9. Security Models and Practice

9.1 Policy, Models, and Trust

Designing secure systems requires a clear idea of the security goals that
are to be achieved, and an implementation framework in which to try to
achieve those goals.

9.1.1

Security Policy

A key component of such a framework is for designers to define a security
policy, which is a well-defined set of rules that include the following
components:

Subjects: the agents who interact with the system, which could be
defined in terms of specific individuals or in terms of roles or ranks
that groups of individuals might hold within an organization. Indi-
viduals could be identified by their names or by their job titles, like
President, CEO, or CFO. Groups could be defined using terms such
as users, administrators, generals, majors, faculty, deans, managers,
and administrative assistants. This category also includes outsiders,
such as attackers and guests.

Objects: the informational and computational resources that a secu-
rity policy is designed to protect and manage. Informational exam-
ples include critical documents, files, and databases, and computa-
tional resources include servers, workstations, and software.
Actions: the things that subjects may or may not do with respect to
the objects. Examples include the reading and writing of documents,
updating software on a web server, and accessing the contents of a
database.

Permissions: mappings between subjects, actions, and objects, which
clearly state what kinds of actions are allowed or disallowed.
Protections: the specific security features or rules that are included in
the policy to help achieve particular security goals, such as confiden-
tiality, integrity, availability, or anonymity.

Thus, a security policy places constraints on what actions the subjects in
a system can do with respect to the objects in that system, in order to
achieve specific security goals. These policies are useful and often required.
Several compliance regulations, such as the Health Insurance Portability
and Accountability Act (HIPAA), the Gramm-Leach-Bliley Act (GLBA),
and the Sarbanes-Oxley Act (SOX), require that an organization, such as
a hospital, financial institution, or public corporation, have such policies.

9.1. Policy, Models, and Trust

9.1.2 Security Models

A security model is an abstraction that provides a conceptual language for
administrators to specify security policies. Typically, security models define
hierarchies of access or modification rights that members of an organization
can have, so that subjects in an organization can easily be granted specific
rights based on the position of these rights in the hierarchy. Examples
include military classifications of access rights for documents based on
concepts like “unclassified,” “confidential,” “secret,” and “top secret.”

These abstractions give policy writers a notational shorthand for defin-
ing access rights. Without such abstractions, security policies would be
needlessly long. For instance, it is typical for a manager to have all of
the same access rights as his subordinates, and more. A policy could spell
this out in laborious detail or it could simply define a manager’s rights in
terms of a security model that automatically includes subordinate rights in
a manager’s list by using a hierarchy.

Discretionary and Mandatory Access Control

As mentioned in Section 3.3.3, two of the most widely used models of access
control are discretionary and mandatory access control.

In general, discretionary access control, or DAC, refers to a scheme
where users are given the ability to determine the permissions governing
access to their own files. DAC typically features the concept of both users
and groups, and allows users to set access-control measures in terms of
these categories. In addition, DAC schemes allow users to grant privileges
on resources to other users on the same system. Most computer systems
employ some variant of a DAC scheme for access control to its resources.
For example, both Linux and Windows allow users to specify file and
folder permissions by means of access control lists (Section 3.3.3). These
permissions in turn affect the rights other users have with respect to these
files.

In contrast, mandatory access control is a more restrictive scheme that
does not allow users to define permissions on files, regardless of ownership.
Instead, security decisions are made by a central policy administrator. Each
security rule consists of a subject, which represents the party attempting
to gain access, an object, referring to the resource being accessed, and a
series of permissions that define the extent to which that resource can be
accessed. Security-Enhanced Linux (SELinux) incorporates mandary access
control as a means of explicitly defining permissions to minimize abuse
and misconfiguration issues. Mandatory access-control models attempt to
prevent transfer of information that is not allowed by the rules.

447

448

Chapter 9. Security Models and Practice

9.1.3 Trust Management

The concept of trust is difficult to define. We know it involves a confidence
in an entity’s ability and intentions, but there are also subjective elements,
including our own risk tolerance and culture. So, rather than try to formal-
ize a rigorous definition of trust, let us consider a related concept instead.

A trust management system is a formal framework for specifying se-
curity policy in a precise language, which is usually a type of logic or
programming language, together with a mechanism for ensuring that the
specified policy is enforced. Thus, a trust management system consists of
two main components, a policy language and a compliance checker. Policy
rules are specified in the policy language and are enforced by the com-
pliance checker. These language and enforcement components typically
involve rules describing four concepts. (See Figure 9.1.)

e Actions: operations with security-related consequences on the system

e Principals: users, processes, or other entities that can perform actions
on the system

e Policies: precisely written rules that govern which principals are
authorized to perform which actions

o Credentials: digitally signed documents that bind principal identities
to allowable actions, including the authority to allow principals to
delegate authority to other principals.

KeyNote

There are several languages that specify these terms and how they are
applied. The KeyNote system, first presented in 1999, is one such language.
In addition to implementing the terms defined above, KeyNote defines an
application to be a program or system that uses KeyNote. A policy compli-
ance value (PCV) is the answer issued by KeyNote in response to a request
by a principal to perform some action—it indicates whether the requested
action conforms to existing policies. To use KeyNote, an application queries
the KeyNote system when a principal requests an action, including the ap-
propriate policies and credentials in the query. The action is described using
a set of attribute-value pairs known as an action attribute set that illustrates
the security implications of that action. KeyNote then replies with a PCV
indicating whether or not the action should be allowed, and the application
behaves accordingly. Note that KeyNote merely interprets whether or not a
given action should be permitted according to the provided policies, and it
is up to the application to invoke KeyNote properly and correctly interpret
its responses.

9.1. Policy, Models, and Trust

[Principals

y
[

A Compliance
i=, E Checker

<

&
g
?

Credentials

N\

Figure 9.1: A trust management system. In this example, Alice has sufficient
valid credentials for her requested action, with respect to the specified
policies, and Bob does not.

XACML

A newer policy language, the Extensible Access Control Markup Language
(XACML), was released in 2009. XACML leverages the Extensible Markup
Language (XML) to define security policies and describe how these policies
should be enforced. Using XML allows administrators to declare policies in
a widely adopted and easy-to-use format that is already well supported in
many environments. Like KeyNote, XACML includes all of the traditional
trust management features: a principal is referred to as a subject that can re-
quest to perform actions on a resource. XACML also introduces several new
concepts. A policy administration point (PAP) manages security policies.
A policy decision point (PDP) is responsible for issuing authorizations,
analogously to how KeyNote issues PCVs. A policy enforcement point
(PEP) requests access on behalf of a principal and behaves in accordance
with the PDP’s response. Finally, a policy information point (PIP) provides
additional secutiry-related information. XACML also includes an approach
to delegation that allows parties to grant rights to other parties without a
central policy administrator. This is possible because the rights to delegate
privileges are maintained independently from access rights.

449

450 Chapter 9. Security Models and Practice

9.2 Access-Control Models

In this section, we overview various models that were developed to formal-
ize mechanisms to protect the confidentiality and integrity of documents

stored in a computer system.

9.2.1

The Bell-La Padula (BLP) model is a classic example of a mandatory
access-control model for protecting confidentiality. The BLP model is
derived from the military multilevel security paradigm, which has been
traditionally used in military organizations for document classification and
personnel clearance. Such a security model has a strict, linear ordering on
the security of levels of documents, so that each document has a specific
security level in this ordering and each user is assigned a strict level of
access that allows them to view all documents with the corresponding level

The Bell-La Padula Model

of security or below. (See Figure 9.2.)

Users

Figure 9.2: A multilevel security system, as in the military model, which

Y

Top Secret

R

Secret
- @@

b

Confidential

N —

Unclassified

-~ @@

Security Levels

\

-

Documents

defines a strict linear order on the security levels of documents.

9.2. Access-Control Models

Military Classification Hierarchies

For example, a typical multilevel security system based on the military
security framework works as follows:

e There are several security levels. The bottom level is unclassified.
The other levels are in increasing order of security, with names like
confidential, secret, and top secret, respectively.

e Each document is classified at one of the security levels.
e Each user obtains “clearance” at one of the security levels.

e A document of a certain level can be accessed only by users with the
same or higher clearance level.

Total Orders and Partial Orders

Such a strict, linear ordering for documents can be defined in terms of a
comparison rule, <. We say that such a rule defines a total order on a
universe set, U, if it satisfies the following properties:

o Reflexivity: If x is in U, then x < x.

o Antisymmetry: If x <yandy < x, thenx =y.

o Transitivity: If x <yandy < z,thenx < z.

o Totality: If x and y arein U, then x <yory < x.

All of the usual definitions of “less than or equal to” for numbers, such
as integers and real numbers, are total orders.

We can still define a notion of “less than or equal to,” however, if we
drop the requirement of totality. In this case, we get a partial order, denoted
with <. The classic example of a partial order is the set of courses taught at
a college or university, where we say that, for two courses A and B, A < B,
if A is a prerequisite for B. Note, in particular, that there are no cycles of
prerequisites, for otherwise no one would be able to satisfy the prerequisites
for any course in such a cycle.

Given a partial order =, it is always possible to find an associated total
order < compatible with =, that is, if x < y, then x < y. Such a total order
is not unique in general.

451

452

Chapter 9. Security Models and Practice

How the BLP Model Works

Similar to a military security model, the BLP model also has security levels.
Instead of forming a strict linear order, however, as in the military model,
the security levels in BLP form a partial order, <.

In addition, instead of documents, more general objects are considered.
Each object, x, is assigned to a security level, L(x). Similarly, each user, u,
is assigned to a security level, L(u). Access to objects by users is controlled
by the following two rules:

o Simple security property. A user u can read an object x only if

L(x) < L(u).

e *-property. A user u can write (create, edit, or append to) an object x
only if
L(u) < L(x).

The simple security property is also called the “no read up” rule, as it
prevents users from viewing objects with security levels higher than their
own. The *-property is also called the “no write down” rule. It is meant to
prevent propagation of information to users with a lower security level.
The BLP rules capture the principle that information can only flow up,
going from lower security levels to higher security levels.

A consequence of these rules is that users with different security levels
can have only one-way communication. Namely, if L(u) =< L(v), then u
can send a message to v (u writes up the message and v reads down the
message). However, the opposite is not possible. To overcome this problem,
one can change the meaning of L(u) to represent the maximum security
level that 1 can have and allow u to assume a current security level, C(u),
such that C(u) =< L(u). Now, if L(u) < L(v), user v can assume current
security level C(v) = L(u) to have a two-way communication with user u.

Using the BLP Model

In practical applications of the BLP model, it is common to define the partial
order = of security levels starting from a set B of basic levels that have a
linear order < and a collection S of categories (also called compartments).
A security level L(x) now consists of a pair (b(x),S(x)), where b(x) € B
and S(x) C S. Also, the level of x precedes the level of y if the basic level of
x is less than the basic level of iy and the subset of categories of x is contained
in the subset of categories of y.

9.2. Access-Control Models 453

Defining Security Levels Using Categories

In other words, using the approach of defining security levels as pairs of
traditional security labels and categories, we can write the comparison rule
as follows:

(b(x),5(x)) = (b(y), S(y)) <= b(x) < b(y) and S(x) C S(y).

An example of partial order built from the military basic levels and a set of
categories associated with geographic regions is shown in Figure 9.3.

[Top Secret {US, Canada, France, Italy, China} J

t
| |

[Top Secret {US, Canada} J [Top Secret {France, Italy, China}]

I

[Secret {US, Canada} J [Secret {France, Italy} J Secret {China}

[Confidential {US}] [Confidential {Italy}]

[Confidential @ J

Unclassified @

Figure 9.3: A partial order of security levels induced by basic levels and
categories in the BLP model.

Incidentally, the BLP model can be further augmented with discre-
tionary access-control rules, expressed, for example, by access control lists
for every object. While such discretionary access-control rules can be
created and updated by users, only system administrators can modify the
mandatory access-control rules associated with security levels in such a
scheme.

454

Chapter 9. Security Models and Practice

9.2.2 Other Access-Control Models

There are several other access-control models that differ from the Bell-
La Padula model. Some alternative models address security goals other
than confidentiality, and other models make changes in the two basic
access-control rules of the BLP model.

The Biba Model

The Biba model has a similar structure to the BLP model, but it addresses in-
tegrity rather than confidentiality. Objects and users are assigned integrity
levels that form a partial order, similar to the BLP model. The integrity
levels in the Biba model indicate degrees of trustworthiness, or accuracy,
for objects and users, rather than levels for determining confidentiality.
For example, a file stored on a machine in a closely monitored data center
would be assigned a higher integrity level than a file stored on a laptop.
In general, a data-center computer is less likely to be compromised than
a random laptop computer. Likewise, when it comes to users, a senior
employee with years of experience would have a higher integrity level than
an intern.

The access-control rules for Biba are the reverse of those for BLP. That is,
Biba does not allow reading from lower levels and writing to upper levels.
In particular, if we let I(u) denote the integrity level of a user u and I(x)
denote the integrity level for an object, x, we have the following rules in the
Biba model:

e A user u can read an object x only if

I(u) < I(x).

e A user u can write (create, edit or append to) an object x only if
I(x) = I(u).

Thus, the Biba rules express the principle that information can only flow
down, going from higher integrity levels to lower integrity levels.

The Low-Watermark Model

The low-watermark model is an extension to the Biba model that relaxes the
“no read down” restriction, but is otherwise similar to the Biba model. In
other words, users with higher integrity levels can read objects with lower
integrity levels. After such a reading, the user performing the reading is
demoted such that his integrity level matches that of the read object. One

9.2. Access-Control Models

example of an implementation of the low-watermark model is LOMAC, a
security extension that can be loaded as a kernel module on Linux.

The Clark-Wilson Model

Rather than dealing with document confidentiality and/or integrity, the
Clark-Wilson (CW) model deals with systems that perform transactions.
It describes mechanisms for assuring that the integrity of such a system is
preserved across the execution of a transaction. Key components of the CW
model include the following:

o Integrity constraints that express relationships among objects that
must be satisfied for the system state to be valid. A classic example of
an integrity constraint is the relationship stating that the final balance
of a bank account after a withdrawal transaction must be equal to the
initial balance minus the amount withdrawn.

o Certification methods that verify that transactions meet given in-
tegrity constraints. Once the program for a transaction is certified,
the integrity constraints do not need to be verified at each execution
of the transaction.

e Separation of duty rules that prevent a user that executes transaction
from certifying it. In general, each transaction is assigned disjoint sets
of users that can certify and execute it, respectively.

The Chinese Wall Model

The Brewer and Nash model, commonly referred to as the Chinese wall
model, is designed for use in the commercial sector to eliminate the possi-
bility of conflicts of interest. To achieve this, the model groups resources
into “conflict of interest classes.” The model enforces the restriction that
each user can only access one resource from each conflict of interest class.
In the financial world, such a model might be used, for instance, to prevent
market analysts from receiving insider information from one company and
using that information to provide advice to that company’s competitor.
Such a policy might be implemented on computer systems to regulate
users’ access to sensitive or proprietary data.

455

456

Chapter 9. Security Models and Practice

9.2.3 Role-Based Access Control

The role-based access control model can be viewed as an evolution of the
notion of group-based permissions in file systems. An RBAC system is
defined with respect to an organization, such as company, a set of resources,
such as documents, print services, and network services, and a set of users,
such as employees, suppliers, and customers.

Core RBAC

The main components of the RBAC model are users, roles, permissions, and
sessions, defined as follows:

e A user is an entity that wishes to access resources of the organization
to perform a task. Usually, users are actual human users, but, more
generally, a user can also be a machine or an application, if such
entities can be assigned identities.

e A role is defined as a collection of users with similar functions and
responsibilities in the organization. Examples of roles in a university
may include “student,” “alum,” “faculty,” “dean,” “staff,” and “con-
tractor.” In general, a user may have multiple roles. For example, an
administrative assistant at a university who enrolls for an accounting
course may have the roles “staff” and “student.” Note that some roles
may be a subset of other roles. For instance, deans are usually a subset
of the faculty of a university. Also, some roles may have a unique
user, such as the president of a university or CEO of a company.
Roles and their functions are often specified in the written documents
of the organization, such as bylaws and statutes. The assignment
of users to roles follows resolutions by the organization, such as
employment actions (e.g., hiring, promotion, and resignation) and
academic actions (e.g., admission, degree conferral, and suspension).

o A permission describes an allowed method of access to a resource.
More specifically, a permission consists of an operation performed on
an object, such as “read a file” or “open a network connection.” Each
role has an associated set of permissions.

e A session consists of the activation of a subset of the roles of a user
for the purpose of performing a certain task. For example, a laptop
user may create a session with the administrator role to install a new
program. Later on, the same user may create another session with
a nonprivileged role to use the application. Sessions support the
principle of least privilege (Section 1.1.4).

9.2. Access-Control Models 457
The Power of Role-Based Access Control

The components described above characterize what is known as the core
role-based, access-control (RBAC) model, which generalizes the widely
used concept of user groups and introduces the notion of sessions.

The power of the RBAC model is given by two additional components,
however:

® Role hierarchy

e Role constraints

We describe these next.

Hierarchical RBAC

In the role-based access control model, roles can be structured in a hierarchy
similar to an organization chart. More formally, we define a partial order
among roles by saying that a role Ry inherits role Ry, which is denoted

Ri = Ry,

if R; includes all permissions of R, and R; includes all users of R;. When
Ry = Ry, we also say that role R; is senior to role R, and that role R; is
junior to role R;.

For example, in a company, the role “manager” inherits the role “em-
ployee” and the role “vice president” inherits the role “manager.” Also,
in a university, the roles “undergraduate student” and “graduate student”
inherit the role “student.” Informally, the notion of inheritance is captured
by the phrase “is a,” as in the phrase “an assistant professor is a faculty
member” or the phrase “a provost is an administrator.”

Inheritance simplifies the administrative management of permissions
and users associated with roles. That is, when the system administrator
adds a permission to a role, the system can propagate this permission
addition to senior roles. For example, adding the permission of viewing
student grades to the role professor, automatically adds this permission also
to the role dean and other roles senior to professor.

Similarly, when the system administrator adds a user to a role, the
system can propagate this user addition to all junior roles. For instance,
adding user Mike to the role professor automatically adds Mike to the role
employee and other roles junior to professor.

458 Chapter 9. Security Models and Practice

Visualizing Role Hierarchy

Role hierarchies can be graphically represented with a diagram where
each role is connected to its immediate predecessors and successors in the
hierarchy. That is, an edge is drawn from role a R; to a role Ry if

Ri Z Ry
and there is no other role R3 distinct from Ry and R, such that
R1 = R3 = Ro.
Also, the diagram is drawn so that each role is placed at a higher y-

coordinate than its junior roles.

An example of such a diagram for a role hierarchy is shown in Fig-
ure 9.4.

Chief Executive
Officer

Chief Medical
Officer

Chief Technology
Officer

Chief Operating
Officer

Technical Administrative Department Nurse
Manager Manager Head Manager

Customer
Service Staff

Administrative
Staff
Hospital
Staff

Figure 9.4: A simplified role hierarchy for a hospital. Note that, in going
down from one node X to a connected node Y below it, we can always say
“XisaY.”

Computer
Technician

‘ Accountant ’ ‘ ’ ‘PhysicianJ L Nurse ’

Lab
Technician

Clinical
Staff

Technical
Staff

9.2. Access-Control Models

Constrained RBAC

To provide support for the principle of separation of privilege, the RBAC
model allows us to define constraints that prevent users from having
incompatible roles that create conflicts of interest.

The simplest form of constraint is a pair of roles (R, Ry) indicating
that no user can be assigned to both roles Ry and R;. For example, in
a university, no user should have the roles of teaching assistant (who
recommends grades) and instructor (who is responsible for a course and
finalizes grades based on recommendations from the teaching assistant) at
the same time. Similarly, in a company, no user should have both the roles
of buyer, who proposes purchases of goods, and controller, who reviews
and approves purchase orders. A more general constraint is defined by
a pair (S,k), where S is a subset of roles and k > 2 is an integer. This
constraint, called a separation of duty relation, stipulates that no user can
have k or more roles from S.

Separation of duty relations can have two different meanings, static and
dynamic.

e In a static separation of duty relation (S, k), the constraint holds for
the assignment of users to roles. That is, no user can be assigned to k
or more roles in S.

e In a dynamic separation of duty relation (S, k), the constraint holds
for the activation of roles of users in sessions. That is, no user can
have k or more roles in S activated in a session.

Dynamic separation of duty relations are more flexible, as they allow users
to have different roles from an incompatible set in different sessions, so long
as the sessions don’t overlap in time. For example, suppose that Anna is the
head of the research division of a company. In one session, Anna activates
the role “supervisor” to approve a travel expense report from an employee
of her division. In another session, she activates the role “traveler” to
submit her own travel expense report. The following dynamic separation
of duty relation assures that Anna cannot approve her own travel expense
report.

({supervisor, traveler},2)

When constrained RBAC and hierarchical RBAC coexist, separation of
duties should be interpreted in the context of inheritance. Specifically, if a
role R; inherits a role Ry and R; is involved in a separation of duty relation
(S, k), thatis, Ry € S, then the assignment or activation constraint holds for
users of role R; as well.

459

460 Chapter 9. Security Models and Practice

9.3 Security Standards and Evaluation

Many different organizations have developed standards that define how to
enforce and assess security practices and policies in high-security contexts.
In particular, various government organizations, including the United
States Department of Defense and the National Security Agency, have
developed stringent regulations regarding computer systems which may
be used to store and transfer highly sensitive information. We review some
of these standards in this section.

9.3.1 Orange Book and Common Criteria

The Trusted Computer System Evaluation Criteria (TCSEC), commonly
referred to as the Orange Book (because of its orange cover), was developed
in 1983, and updated in 1985, as a standard for evaluating the security of
computers storing classified information. (See Figure 9.5.)

Figure 9.5: The Orange Book, as updated in 1985. (Public domain image.)

9.3. Security Standards and Evaluation

The Orange Book defines four “divisions” of security criteria:

e Division D represents a system with “minimal protection.” This
status is assigned to systems that have been evaluated by TCSEC but
do not meet security requirements for a higher-level division.

e Division C guarantees “discretionary protection,” indicating the sys-
tem makes use of some type of discretionary access-control system
(Section 3.3.3).

e Division B guarantees “mandatory protection,” indicating the system
implements mandatory access control (Section 3.3.3).

e Division A guarantees “verified protection,” demonstrating that a
system has a formal process for verification of security.

Common Criteria

The Common Criteria for Information Technology Security Evaluation,
commonly referred to as Common Criteria, is a set of international stan-
dards describing a computer security certification. In the United States,
it has replaced TCSEC as the standard measure of computer security in
government organizations. Specifically, it defines key concepts related to
security evaluation and details how to conduct evaluations in a standard-
ized manner:

o The target of evaluation (TOE) is the system subject to evaluation.

o A protection profile (PP) describes a set of security requirements for
a broad class of security devices, such as an operating system or
firewall.

o A security target (ST) is a document that defines the vendor’s security
goals for the TOE, each of which is evaluated based on the implemen-
tation of the system.

Common Criteria is not a certification that vouches for the security of
a product. Instead, it is a framework by which vendors can document the
security goals of their products and evaluate their systems in the context
of those goals. For example, newer versions of Microsoft Windows are
certified as having been evaluated according to the Common Criteria, but
security vulnerabilities in Windows are not uncommon. The certification
indicates that Microsoft was able to carefully define security goals and
assess Windows according to the Common Criteria framework, but it
does not assert that Windows is secure in a more general sense. Some
researchers have therefore criticized the Common Criteria as expensive,
time-consuming, and not particularly effective at guaranteeing functional
security.

461

462

Chapter 9. Security Models and Practice

9.3.2 Government Regulations and Standards

With the increase in importance of computer security, there are now sev-
eral government regulations and standards regarding security and privacy
requirements of systems that impact citizens.

FIPS 140

The Federal Information Processing Standardization (FIPS) 140 are a set
of standards setting requirements for cryptographic modules used by gov-
ernment organizations in the United States. FIPS discusses requirements
in eleven areas, including documentation, flow of information, physical
security, key management, and attack mitigation. The newest release of
these standards, FIPS 140-2, defines the specifications for four “levels” of
security, each with different requirements.

Security Level 1 is the lowest level of security. It provides no mechanism
for ensuring physical security, and allows the cryptographic module to
be executed on a general-purpose computer system such as a personal
computer. Level 2 increases stringency by requiring physical security
measures, such as tamper-evident coatings and pick-resistant locks, intro-
duces a requirement for a role-based authentication system, and mandates
a trusted operating system adhering to additional standards. At Level 3,
requirements are provided to prevent (rather than merely detect) physi-
cal tampering, and identity-based authentication replaces the role-based
requirements of Level 2. The strictest level, Level 4, tightens physical
security measures in that all sensitive cryptographic keys and messages
are destroyed in the event of unauthorized attempts at physical access.
In addition, further measures are implemented to protect against certain
environmental conditions such as extremes in temperature and voltage.

Other Standards

Certain industries are legally bound to adhere to various standards that
dictate requirements for storing information. For example, the storage of
healthcare records in the United States is regulated according to the Health
Insurance Portability and Accountability Act (HIPAA). HIPAA establishes
standards requiring healthcare providers and employers to maintain the
privacy of patient records. Title II of HIPAA defines five rules dealing
with healthcare documents. In particular, the “Privacy Rule” defines the
concept of Protected Health Information (PHI) and sets regulations on the
use and disclosure of this information. The Privacy Rule, which applies to
both paper and electronic documents, requires that if healthcare providers

9.3. Security Standards and Evaluation

need to share PHI without a patient’s permission (to facilitate medical
care, for example), only the minimum amount of information necessary
for treatment is disclosed. The “Security Rule” defines administrative,
physical, and technical security safeguards designed to prevent access by
unauthorized parties to PHI stored in electronic form. Small health care
organizations (e.g., a dental practice with one or two dentists) often find
the HIPAA “Security Rule” to be onerous to implement. This has slowed
adoption of electronic record keeping in the health care sector. Adherence
to HIPAA is mandated by law, and healthcare providers may be subject to
legal action if they are found to be in breach of HIPAA standards.

The Family Educational Rights and Privacy Act (FERPA) establishes
similar requirements for protecting the privacy of educational records in
the United States. As with HIPAA, both electronic and paper records
are covered by the law. Under FERPA, all students must have access to
their own student records. In addition, schools must request consent from
a student before disclosing that student’s educational records to another
party. Students are also given the right to view recommendations included
in applications to educational institutions, but students commonly waive
this right at the request of the institution or recommender.

In contrast to the United States’ compartmentalized approach to privacy
standards, the European Union established the Data Protection Directive
as a single standard to regulate the processing of any type of personal
information, including bank statements, criminal records, and healthcare
information. This directive defines three categories of conditions that must
be met to warrant the disclosure of sensitive information: transparency,
legitimate purpose, and proportionality. Transparency dictates that the data
subject is informed of the disclosure of his or her information, and that
either consent or allowed cause for disclosure is provided. Legitimate pur-
pose requires that information can only be disclosed for specified reasons,
and must not be used in any other manner. Finally, proportionality requires
that only necessary personal data is processed.

In addition to standards designed to regulate personal information,
public companies in the United States must adhere to strict guidelines
detailing how financial records are processed and stored. The Sarbanes-
Oxley Act, also known as SOX, was passed in 2002 and lays out stringent
rules dictating how corporate accounting should be conducted and audited.
In particular, executives of a company may be held personally liable for
fraudulent record keeping by the company. SOX has been criticized as
overly rigorous and costly, potentially putting United States corporations
at a disadvantage in the international market. Nevertheless, many see
SOX compliance as a necessity to guarantee corporate transparency and
accountability for fraud.

463

464

Chapter 9. Security Models and Practice

9.4 Software Vulnerability Assessment

A modern computer system is a collection of many complex components
working together. A single flaw in any of these components could result
in a compromise of the security of the entire system. Such flaws may be
extremely subtle, ranging from minor coding errors to device misconfigu-
ration.

The process of identifying these types of flaws, whether they reside in an
operating system, application software, or in the configuration of network
devices, is known as vulnerability assessment. We begin by discussing
techniques used in the analysis of software, before examining how the
security of a network is assessed. Similar terminology is used in both
situations.

Black-Box Analysis

Black-box analysis refers to an assessment where the inner workings of
the target are hidden from the auditor. Intuitively, the system is sitting
inside a “black box,” which can only be observed in terms of its input-
output behavior. For example, a network auditor performing a black-box
test may have the public address of a target web site, but no knowledge of
the internals of that web site’s surrounding network.

In software, black-box assessments are typically performed by indepen-
dent vulnerability research groups auditing commercial software. In these
situations, auditors may have working copies of the software, but no access
to its source code. Black-box testing is designed to simulate the capabilities
of a real-life attacker and attempt to address issues that are most likely to
occur in real situations.

White-Box Analysis

In contrast, white-box analysis gives auditors access to any additional
information required to conduct a full assessment, such as source code,
documentation, and detailed network topology, besides the system’s input-
output behavior.

White-box analysis enables auditors to discover vulnerabilities that may
be difficult to find without this additional transparency, but this extra
knowledge may come with the cost of greater time and financial investment
to complete an analysis.

9.4. Software Vulnerability Assessment 465

Gray-Box Analysis

Gray-box analysis falls somewhere between these two extremes. It requires
that a carefully selected subset of details be available to auditors, often
chosen to encourage focus on high-risk areas, but not the full disclosure
that would be required for a white-box analysis.

9.4.1 Static and Dynamic Analysis

Once the scope of an audit has been determined, auditors can employ a
variety of techniques to attempt to discover vulnerabilities in targets, which
broadly fall into two categories, static analysis and dynamic analysis. (See
Figure 9.6.)

e Static analysis involves the examination of a system just by looking at
its code and data.

e Dynamic analysis involves the examination of a system while it is
running.

loloolioiooliololiooioiooolionog
golollocolollocoololiioooiololiiocolo
lololooolooollioloooliolololicioo
gliiooliolooliololiooololiooololol
oolollooliolooolioloooiolooliiolo
gliiooliciooliolooliioioloocoliiolog
looliiooiiololoololioliololioooioll

oololloolooliiololoooiiiolooolio
looliooiiioolioiooiioliololioooioll

gololloolooliiololoooiiicioooliolo
gliioolioliooliololiiooiolooolionog
0010110010110001011100010101110010
olioclooologollioiooolioioliolioioo
1ooliiooiooliololoooloNoooioiol
olioolioioolioloolioioioooliolng
gloliooiiioolicololicliololioooioll

lgiooloolooliiololocooiiocioooliolo:

(a) (b)

Figure 9.6: The difference between static and dynamic analysis: (a) Static
analysis examines a system from its code and data, without running it.
(b) Dynamic analysis examines an active, running system.

466

Chapter 9. Security Models and Practice

Static Analysis

As mentioned above, static analysis refers to the process of analyzing a
system without actually executing the targeted software. Static analysis
typically includes analysis of source code or binary code.

Source-Code Auditing

Source-code auditing is the process of carefully examining the source code
of a target application in an attempt to uncover security vulnerabilities and
other software bugs. Source-code auditing may take place at any point in
the software development life cycle—sometimes code is audited early in
the development of an application, while other times an audit is performed
in response to security problems found in a released product.

Source-code auditing requires a highly specialized skill set that is not
necessarily the same as that of a traditional software developer. There are a
wide variety of different strategies used in structuring an audit, and these
strategies should be carefully chosen based on the nature of the targeted
software, the amount of code being audited, and time constraints. In
general, auditors start by familiarizing themselves with the basic functions
of the target application before examining its code. In some situations, an
auditor may choose to identify security-critical areas to focus on. In other
circumstances, an auditor may identify locations in a program that accept
external input and trace through a program’s code following that input.
Once a potential vulnerability has been identified, source-code auditors will
typically utilize dynamic analysis techniques to verify its exploitability.

Several automated analysis tools have been developed to assist auditors
in identifying vulnerable source code. The simplest of these tools just
searches code for potentially unsafe functions that are frequently used
incorrectly, and identifies code patterns that may result in a security vulner-
ability. For example, copying data into a fixed-length buffer may be flagged
as a potential buffer overflow (Section 3.4.3). More sophisticated scanners
use complex heuristics to analyze data flow and ensure expected behavior.

Such tools may be very effective at identifying some types of vulnera-
bilities, such as memory corruption issues or other bugs that typically stem
from improper function use or low-level syntactical issues. Other classes
of bugs related to high-level design issues or unexpected behavior may go
undetected, however. In fact, it has been proven that finding all possible
errors in a given program is computationally undecidable. Static analysis
tools attempt to provide useful approximate solutions to this problem, but
will never be able to guarantee the security of a program.

9.4. Software Vulnerability Assessment

Binary Auditing

In many situations, the source code of a targeted application is unavailable.
For example, a vulnerability research lab may wish to audit the security of a
closed-source commercial software without the cooperation of the vendor.
In other cases, auditors are hired by software companies to perform black-
box testing of their software, restricting access to source code. In these
scenarios, auditors must use tools and techniques designed to analyze bi-
nary code, usually with the help of a disassembler—an application that can
interpret compiled machine code into human-readable assembly language
for analysis.

The process of investigating the inner workings of a compiled program
is known as reverse engineering. Many of the same techniques developed
for source-code auditing can be applied to reverse engineering, with ad-
ditional complexity introduced due to the potentially poor readability and
complexity of assembly code.

Dynamic Analysis

Dynamic analysis is a method of vulnerability assessment that involves
actually running live software to uncover flaws.

Most often, this type of analysis is done with the assistance of a de-
bugger—a piece of software that allows a developer or auditor to carefully
control a program’s execution at a low level, including the ability to ma-
nipulate a process’s address space manually or step through a program’s
execution one instruction at a time.

By supplementing static analysis, such as code review and reverse en-
gineering, with dynamic analysis techniques, auditors can identify poten-
tially vulnerable situations, provide input triggering the desired situation,
and trace execution of the program step by step.

More recently, virtual machine technology is being used by auditors
performing dynamic analysis. Virtual machines provide the ability to create
a snapshot capturing the exact state of an operating system and all its
programs. During dynamic analysis, an auditor can create a snapshot
before testing an attack scenario. After completing this analysis, the auditor
can revert the virtual machine to the state contained in the snapshot, to
guarantee fully reproducible results in subsequent tests.

467

468

Chapter 9. Security Models and Practice

Fuzzing

At any point that an application receives input from an external source,
there exists the possibility of introducing malicious code designed to exploit
a vulnerability in the application. Collectively, these points are referred to
as a program’s attack surface, and represent all of the locations in which
the application has contact with unknown or uncontrolled factors. By
providing malformed or otherwise unexpected input to test each of these
points, an auditor may be able to identify situations in which the targeted
application does not function as expected. In many cases, provoking this
unexpected behavior is the first step in discovering vulnerabilities that may
be used to completely compromise the application.

Fuzzing is a means of automating the process of injecting unexpected in-
put into an application with the goal of uncovering exploitable vulnerabil-
ities. Fuzzers typically produce input for the program and repeatedly run
the program with each generated input, recording events such as crashes
and error messages for future analysis. The most primitive fuzzers simply
generate random streams of input to be provided to the target program.
While this may uncover more obvious bugs, more sophisticated techniques
must be used to uncover more subtle vulnerabilities. Fuzzers are often
developed for specific programs, network protocols, or file formats. For
example, a fuzzer may start with valid input specified by the auditor and
selectively mutate portions of this input in an attempt to produce error
conditions in the target application.

9.4.2 Exploit Development and Vulnerability Disclosure

An exploit is a piece of code specifically designed to take advantage of
a software vulnerability to achieve a result unintended by the vulnerable
program ranging from denial of service to escalation of privileges. Exploits
are often developed by vulnerability researchers as a proof of concept to
establish that a software bug is exploitable in practice. With the advent
of automated network scanners for use in penetration testing, exploitation
of software has become its own specialized industry. Network scanning
companies frequently employ their own exploit developers, who specialize
in writing robust, portable exploit code. Other companies purchase exploit
code from independent developers. Network scanners and other exploita-
tion frameworks make exploiting software as simple as selecting a target.
Because of this, they have generated some controversy—while they can
be invaluable tools for network security specialists conducting legitimate
audits with permission, they can also be used by malicious parties.

9.4. Software Vulnerability Assessment

Vulnerability Disclosure

In many circumstances, software audits are conducted by consultants or
employees, and the results are handled internally, by either simply correct-
ing the code or issuing a security patch to fix existing installations. Still,
independent security researchers are not subject to the same restrictions,
and have a degree of choice in how they choose to disclose security vulner-
abilities to the general public.

The Ethics of Disclosure

Some security professionals are committed to the concept of responsible
disclosure, which advocates reporting security issues to software and hard-
ware vendors, giving vendors an opportunity to release a patch before the
issue becomes public. After such a patch becomes available, the vendor or
researcher typically publicizes a security advisory or bulletin, with varying
levels of detail regarding the vulnerability and how to mitigate its effects.
Some larger software developers actually provide financial incentives to
vulnerability researchers who responsibly report bugs to the vendor before
disclosing them to the public.

Other vulnerability researchers believe that responsible disclosure does
not hold software companies accountable for the quality and security of
their products. These researchers advocate full disclosure, which involves
publicizing all details of a vulnerability immediately. Many consider this
disclosure policy to be irresponsible, since it may inform malicious parties
of vulnerabilities before giving vendors an opportunity to provide end
users with patches and attack mitigation advice. Even so, it often results
in much faster response times from vendors, who must react to the issue
promptly to prevent widespread exploitation of their product.

To limit public disclosures of unpatched vulnerabilities, some software
vendors attempt to suppress vulnerability disclosures by taking legal action
against researchers. For example, reverse engineering and publishing the
details of a product may constitute disclosure of trade secrets, which may be
illegal. Attempts to silence security disclosures have often generated nega-
tive publicity for vendors, and may do little to actually prevent publication
of security flaws. Other vendors may attempt to reduce public disclosure
by including in software licenses acceptable use clauses that restrict testing
and reverse engineering.

469

470

Chapter 9. Security Models and Practice

9.5 Administration and Auditing

Much of the responsibility for establishing secure computers and networks
rests on system and network administrators. While software and operating
system vulnerabilities are commonplace and difficult to predict in advance,
administrators can implement precautions to minimize the impact of these
flaws. In fact, many dangerous scenarios may arise from the misconfigu-
ration of settings at the software or hardware level, both of which may lie
within the responsibility of an administrator.

9.5.1 System Administration

Learning how to properly administer systems is an expansive topic on
which several books have been written. Even when an administrator
understands the intricacies of the individual components of a network,
complex issues may arise due to the unpredictable interactions between
these components. Rather than attempt to cover the details of system ad-
ministration, we will explain how previously described security principles
and techniques can be applied in a system administration context instead.

User Policies

Least privilege should be employed by restricting the rights of each user
and system component to the bare minimum necessary for smooth opera-
tion. For example, ordinary users should not have access to the administra-
tor account of a machine, except when absolutely necessary. Users should
only have access to files necessary for their work, and users should not be
able to install unnecessary software without permission. If a machine is
running any services that are accessible to the public, these services should
be run with the lowest level of privileges possible, to mitigate the effects of
a potential compromise.

A sound user access control system should be established to set rules
on who receives accounts and with what access. Procedures to grant
and revoke accounts with varying levels of privileges should be created,
and each account should have the appropriate restrictions granting only
necessary privileges.

Proper use of encryption and strong passwords are essential in pre-
venting unauthorized access by intruders. Users should be educated on
password strength, and encouraged or required to change passwords reg-
ularly, especially in the event of a suspected intrusion. Network adminis-

9.5. Administration and Auditing

trators may chose to run password-cracking programs proactively in order
to detect and fix weak passwords. All sensitive communications should
take place over encrypted channels, using appropriate encryption protocols
that have been shown to be secure by experts. Use of “home-grown”
cryptographic solutions is discouraged.

System Policies

Prompt and frequent patching is important to prevent compromise due to
vulnerabilities in software. Exploitation of unpatched vulnerabilities com-
prise a large portion of intrusion scenarios, and could be easily prevented
by implementing an efficient program to monitor and apply software up-
dates in response to security announcements. Clear policies should be
set regarding how updates are installed on user machines, and end users
should not be relied upon to update their own software. Many tools are
available to manage the propagation of software updates throughout an
organization.

Policies should be set to create acceptable levels of physical security.
Decisions should be made as to whether or not ordinary users should have
access to physical resources, such as servers, storage media, and network
devices. Rules should be set regarding the use of removable media, such
as USB flash drives. To prevent live CD attacks (Section 2.4.4), machines
should be configured to boot only from the hard disk. The BIOS password,
known only to system administrators, would have to be entered in order to
boot from a CD or other external media. In high-security contexts, access to
networking cables should be restricted to authorized parties.

Organizations should create policies that define acceptable use of inter-
nal computer systems. To limit organizational liability, companies should
consider requiring employees to sign an agreement to these policies, which
should be clearly written and readily accessible.

Network Policies

Administrators should minimize the attack surface of their networks by
deploying a firewall (Section 6.2) and properly configuring it to allow the
bare minimum of necessary traffic. Larger networks should be segmented
such that any machines providing services to external users are placed in
a DMZ. Machines for internal use only should be in a separate segment
behind a firewall that manages the flow of information between the internal
network and public Internet. Machines that do not need access to the
Internet should be isolated. Administrators should minimize the number of

471

472

Chapter 9. Security Models and Practice

externally accessible services running on each machine to keep the number
of open ports at a minimum.

Segmentation of the network into regions, each residing behind its own
router or switch, can minimize the impact of an intrusion by restricting
the intruder to a limited set of resources. Trusted and untrusted machines
should be located on separate segments to minimize exposure of internal
resources to potentially malicious parties. (See Figure 9.7.) Administrators
should keep track of all machines and devices connected to the network. By
monitoring MAC addresses and logging activity, administrators can detect
and defend against unauthorized access attempts.

\

Switch/Router
\

Web Server External Mail
Server

Firewall

-

-

Internal Mail Database
Server

Figure 9.7: Example of segmentation of a network into regions.

A mail infrastructure should be created that protects internal users from
spam, phishing attempts, and malware. (See Section 10.2.) Positioning
the mail server within a DMZ and performing virus scanning and spam
filtering before mail reaches the internal network is advisable.

Network administrators should regularly conduct audits to ensure com-
pliance with regulations throughout an organization. Policies should define
who conducts these audits, what criteria are to be observed, and how often
they must be performed.

9.5. Administration and Auditing

9.5.2 Network Auditing and Penetration Testing

There are many approaches to testing the security of a network. Network
security audits may be performed to test a network for compliance with
a set of standards, ranging from internal policies to federally mandated
regulations. The scope of an audit can vary dramatically, depending on
which regulations are to be tested.

One of the most common targets of an audit is an organization’s pass-
word policy. Examples of questions that should be answered by such a
policy include the following:

e In what situations are passwords used?

e What steps are being taken to ensure that users make use of strong
passwords?

o Is there a single sign-on system in place or are users responsible for
multiple passwords?

e Is there an account lockout policy in place in the event of repeated
failed attempts to authenticate?

e In what circumstances can users reset or recover lost passwords and
how is this performed?

A thorough audit will answer these questions and assess whether or not
the organization is in compliance with appropriate standards.

Penetration Testing

A penetration test is a hands-on audit that aims to simulate an attack by
an actual intruder. As with source-code auditing, penetration tests grant
varying levels of visibility to auditors, ranging from black-box to white-box
testing. Penetration tests can potentially be disruptive to an organization,
because they may involve exploitation of vulnerabilities and accidental
denial of service to users. Therefore, it is critical that auditors conducting
a penetration test have explicit permission from appropriate parties within
the organization, and clearly define what types of attacks and side effects
are considered acceptable. Without explicit agreement from authorized
parties, a penetration tester may be held liable for any damage incurred
during a test. Some penetration tests are comprehensive and allow auditors
to perform social engineering attacks (Section 1.4.3) and attempt physical
intrusion (Chapter 2), while others are more limited in scope.

473

474 Chapter 9. Security Models and Practice

Penetration testers typically follow a strict methodology that defines
exactly how the test is to be conducted. Such methodologies will vary
depending on the scope of the audit and who is performing it, but the
penetration testing process can typically be divided into three broad phases.

e First, an auditor must gain as much information as possible about the
topology of the target network, a phase known as network discovery
or host enumeration. Auditors can determine which hosts are acces-
sible via the Internet using techniques such as ping sweeping (issuing
ping commands to ranges of IP addresses and recording responses)
and by investigating domain-name registration information and DNS
resolution. Additional topology information can be gathered by using
tools such as traceroute, which returns information about each host
along the path to a target. Ideally, the discovery phase should allow
the auditor to determine which hosts may be promising targets in
later stages of testing.

e After this information-gathering phase, most testers begin a second
phase focusing on network vulnerability analysis. During this stage,
the tester may conduct port scans (Section 6.4.4) to determine which
hosts have open ports. Fingerprinting techniques may be used to
determine which operating systems are in use and which applications
are accessible remotely. In addition, the auditor may begin research-
ing existing vulnerabilities in these applications—if a vulnerable host
is present, that may allow the auditor to gain access to that host and
conduct additional attacks against the network.

e The final phase of a typical penetration test involves actually exploit-
ing known vulnerabilities and attempting to gain access to internal
resources. On a successful intrusion, testers may conduct additional
information gathering to continue mapping out the network topology
and identify additional targets. Often, it is necessary for an auditor
to leverage a compromised system to gain additional access within a
network.

Throughout the penetration testing process, auditors must keep de-
tailed documentation describing what information was discovered, which
techniques were used to attack the target network, and any vulnerabilities
or misconfigurations that allowed the auditor to gain access to restricted
resources. On completion of a penetration test, the auditor must provide
this information to network administrators and suggest mitigation mea-
sures that would defend against future exploitation attempts.

9.6. Kerberos 475

9.6 Kerberos

Kerberos is an authentication protocol and a software suite implementing
this protocol. Kerberos uses symmetric cryptography to authenticate clients
to services and vice versa. For example, Windows servers use Kerberos as
the primary authentication mechanism, working in conjunction with Active
Directory to maintain centralized user information. Other possible uses of
Kerberos include allowing users to log into other machines in a local-area
network, authentication for web services, authenticating email client and
servers, and authenticating the use of devices such as printers. Services
using Kerberos authentication are commonly referred to as “Kerberized”.

9.6.1 Kerberos Tickets and Servers

Kerberos uses the concept of a ticket as a token that proves the identity
of a user. Tickets are digital documents that store session keys. They are
typically issued during a login session and then can be used instead of pass-
words for any Kerberized services. During the course of authentication, a
client receives two tickets:

o A ticket-granting ticket (TGT), which acts as a global identifier for a

user and a session key

o A service ticket, which authenticates a user to a particular service
These tickets include time stamps that indicate an expiration time after
which they become invalid. This expiration time can be set by Kerberos
administrators depending on the service.

To accomplish secure authentication, Kerberos uses a trusted third party
known as a key distribution center (KDC), which is composed of two
components, typically integrated into a single server:

o An authentication server (AS), which performs user authentication

o A ticket-granting server (IGS), which grants tickets to users
The authentication server keeps a database storing the secret keys of the
users and services. The secret key of a user is typically generated by
performing a one-way hash of the user-provided password. Kerberos is
designed to be modular, so that it can be used with a number of encryp-
tion protocols, with AES (Section 8.1.6) being the default cryptosystem.
Kerberos aims to centralize authentication for an entire network—rather
than storing sensitive authentication information at each user’s machine,
this data is only maintained in one presumably secure location. Even in
the event of a compromise of the KDC, the users’ plaintext passwords will
remain secret, since an attacker would only recover the passwords’ hashes.

476

Chapter 9. Security Models and Practice

9.6.2 Kerberos Authentication

Kerberos is based on a protocol designed by Needham and Schroeder in
1978 for authentication using symmetric encryption. When a user wishes
to access services, the following steps are performed. (See Figure 9.8.)

1.

2.

The user provides a username and password on the client machine,
which is cryptographically hashed to form the secret key for the client.

The client contacts the AS, which replies with the following items:
o The client-TGS session key, Kcr, encrypted using the client’s
secret key, K¢ (which the AS has stored in its database).
o The ticket-granting ticket (TGT), encrypted with the secret key
of the TGS, Kt (also stored in the AS database). The TGT
includes key K¢t and a validity period.

The client decrypts the TGS session key Kcr using Kc. To request a
service, the client sends the following two messages to the TGS:
e The TGT (still encrypted using the TGS’s secret key, Kt) and the
name, S, of the service being requested.
e An authentication token consisting of the client ID and time
stamp, encrypted using the client-TGS session key Kcr.

The TGS decrypts the TGT using Kr, thus retrieving the client-TGS
session key Kcr and the validity period of the TGT. If the current
time is within the validity period, the TGS decrypts the authentication
token with key Kcr and sends two messages to the client:
e A new client-server session key, Kcs, encrypted with Kcr.
o A client-to-server ticket, encrypted using the specific service’s
secret key, Ks, which is known to the TGS. This ticket contains
the client ID, network address, validity period, and key Kcs.

After decrypting the client-server session keyKcs, the client authenti-
cates itself to service S by sending the following two messages:
o The client-to-server ticket, sent by the TGS in the previous step.
e The client ID and time stamp, encrypted with Kcs.

The service decrypts the client-to-server ticket using its secret key K
and obtains the client-server session key Kcs. Using Kcg, it decrypts
the client ID and time stamp. Finally, to prove its identity to the
client, it increments the time stamp by 1 and sends it back to the client
reencrypted with Kcs.

The client decrypts and verifies this response using Kcs. If the verifi-
cation succeeds, the client-server session can begin .

Steps 3-7 of the protocol can be repeated by the client to access multiple
services within the validity period of the ticket-granting ticket.

9.6. Kerberos 477

Authentication
Server

| Cleartext Service Request >

)
Client-TGS Session Key i

Client

° .

o

Ticket-Granting Ticket

Ticket-Granting

3
> Server

A
I—i- Ticket-Granting Ticket

A
|_i . Authenticator 1 >

Client-to-Server Ticket

Client

o I

D D
I

Client-Server Session Key

~ Service

I—i . Client-to-Server Ticket

A
|_i ' Authenticator 2

Authenticator 2 response

By B
L 1]

Figure 9.8: Kerberos authentication: (a) The client and authentication server
authenticate themselves to each other. (b) The client and ticket-granting
server authenticate themselves to each other. (c) The client and requested
service authenticate themselves to each other, at which point the service
will be provided to the client.

478

Chapter 9. Security Models and Practice
Kerberos Advantages

Because of its distributed architecture, the Kerberos protocol is designed
to be secure even when performed over an insecure network. Since each
transmission is encrypted using an appropriate secret key (except the initial
plaintext request to the authentication server, which contains no secret
information), an attacker cannot forge a valid ticket to gain unauthorized
access to a service without compromising an encryption key or breaking
the underlying encryption algorithm, which is assumed to be secure. The
integrity of each message can also be further protected from tampering by
including a cryptographic message authentication code, created with the
appropriate session key with each transmission.

Kerberos is also desiged to protect against replay attacks, where an
attacker eavesdrops legitimate Kerberos communications and retransmits
messages from an authenticated party to perform unauthorized actions.
The inclusion of time stamps in Kerberos messages restricts the window in
which an attacker can retransmit messages. In addition, tickets may contain
the IP addresses associated with the authenticated party to prevent replay-
ing messages from a different IP address. Finally, Kerberized services make
use of a “replay cache,” which stores previous authentication tokens and
detects their reuse. Collectively, these measures provide strong protection
against known types of replay attacks.

Additional advantages of Kerberos include the use of symmetric en-
cryption instead of public-key encryption, which makes Kerberos compu-
tationally efficient, and the availability of an open-source implementation,
which has facilitated the adoption of Kerberos.

Kerberos Disadvantages

While Kerberos provides strong security, it has some drawbacks. Most
notably, Kerberos has a single point of failure: if the Key Distribution
Center becomes unavailable, the authentication scheme for an entire net-
work may cease to function. Larger networks sometimes prevent such a
scenario by having multiple KDCs, or having backup KDCs available in
case of emergency. In addition, if an attacker compromises the KDC, the
authentication information of every client and server on the network would
be revealed. Finally, Kerberos requires that all participating parties have
synchronized clocks, since time stamps are used. While these weaknesses
should be considered before deploying Kerberos, they have not prevented
the widespread adoption of Kerberos as a strong authentication protocol.

9.7. Secure Storage 479

9.7 Secure Storage

As discussed in Chapter 2, it is difficult to defend a computer system
against an attacker who has physical access to that system. Nevertheless,
this scenario occurs more often than one might think. For example, an esti-
mated 12,000 laptops are lost or stolen in U.S. airports every week. Besides
the obvious cost of replacing equipment, lost laptops generate a significant
expense for an organization due to the serious risk of data breach. Research
suggests that the average cost of a lost laptop to a corporation is around
$50,000, mostly due to costs associated with intellectual property loss,
forensics, lost productivity, and legal expenses, not the hardware itself. To
help mitigate this problem, a number of technologies have been developed
to protect the confidentiality of data on computer systems, even in the event
of physical compromise.

9.7.1 File Encryption

Password Protection of Files

One approach to protecting sensitive information is to perform encryption
on individual files. Many popular software suites, including Microsoft
Office and Adobe Acrobat, allow users to protect their documents by
encrypting their contents. Early file encryption solutions, such as the
password protection provided by early versions of Microsoft Office, were
designed to withstand casual attempts at data compromise, as they used
naive encryption solutions such as a simple XOR algorithm.

Modern file encryption, on the other hand, is designed to be resilient
against determined attackers. For example, both Microsoft Office 2007
and Adobe Acrobat 9 make use of the AES block cipher for encryption.
Office derives a secret key by iteratively hashing a user-provided password
50,000 times with SHA-1. Repeatedly hashing the password does not
provide increased cryptographic security, but rather is designed to slow
down brute-force attempts by requiring each password guess to perform
a time-consuming computation. In comparison, Acrobat 9 uses the SHA-
256 algorithm, which is considered stronger than SHA-1, but it only hashes
the user-supplied password once to derive a secret key. The effects of this
difference can be observed in practice. A password-recovery tool known
as Elcomsoft advertises that it can achieve 5,000 password attempts per
second with Office 2007, as opposed to 75 million per second for Acrobat 9.

480

Chapter 9. Security Models and Practice

Filesystem Encryption

The Encrypting File System (EFS) is an example of a filesystem-level en-
cryption scheme that is available on recent versions of the Microsoft Win-
dows operating system. EFS works by transparently providing automatic
encryption and decryption of specified files and folders, such that if an
attacker gained physical access to a machine, these files would be indeci-
pherable. Files and folders must be specifically tagged for use with EFS; by
default, all files are left unencrypted.

EFS uses both symmetric and asymmetric cryptography. For perfor-
mance reasons, each file is encrypted with a separate symmetric file-
encryption key (FEK), using AES. The FEK used to encrypt the data is then
encrypted using the user’s public key and stored in the file’s metadata. To
decrypt the file, the FEK is decrypted using the user’s private key, and is
then used to decrypt the data. To support sharing among users, multiple
copies of the FEK can be included in the encrypted file, each encrypted with
a different user’s public key. (See Figure 9.9.) In addition, to ensure that
data can be recovered in the event of a forgotten password or lost private
key, data recovery agnets (DRAs) can be identified by administrators as
parties authorized to decrypt all EFS encrypted files.

| 101 e, (]| | D2 [E0)]]| | 1D3 [E.s(K)] E,(file contents)

Figure 9.9: Format of a file encrypted with Window’s EFS. The FEK, denoted
with K, is encrypted with the public keys of the users sharing the file.

Security Challenges with EFS

A number of security issues have been identified for EFS. First, only the
contents of files are encrypted, so information such as file names and
other metadata is not protected. Secondly, encryption is only applied
on EFS enabled filesystems, so transferring files to other filesystems may
result in accidental decryption. Similarly, file contents may be exposed via
unprotected temporary files.

By default, EFS private keys for the users are stored on disk after being
encrypted using a salted hash of the user’s Windows password. Therefore,
if an attacker can recover a user’s password, their private key can be
decrypted, resulting in the compromise of any EFS encrypted files. In addi-
tion, if the accounts of any users designated as DRAs can be compromised,
then an attacker will gain the ability to decrypt all files.

9.7. Secure Storage

9.7.2 Disk Encryption

Rather than encrypting individual files or folders, it may be desirable to
encrypt entire physical or logical disks. Two of the most popular disk
encryption solutions are BitLocker, available on Windows Vista and 7, and
the open source TrueCrypt.

TrueCrypt

TrueCrypt is a full-disk encryption technology that is designed to protect
disk contents from compromise by an adversary who has obtained physical
access. TrueCrypt can create a virtual encrypted disk within a file and
mount it as if it were a physical drive. Using this setting in Windows, a
TrueCrypt file becomes a volume in Windows Explorer with a drive letter,
just as though an external drive was mounted. TrueCrypt can also encrypt
an entire partition or storage device. TrueCrypt encrypts each sector in the
volume and supports a number of strong symmetric encryption algorithms,
including AES. Note that typical disk sector sizes are powers of two in
the range 512B through 8,192B. Encryption and decryption are performed
automatically by TrueCrypt and are transparent to the user. However, the
TrueCrypt password is independent from the login password and must be
entered by the user when a TrueCrypt file is mounted as a drive.

The ability to deny the presence of data hidden within a computer upon
its examination by an adversary is known as plausible deniability. In
situations where an attacker has the means to force the owner of a computer
system to reveal decryption keys for known encrypted volumes via means
such as extortion, threats, or even torture, being able to deny the existence
of informataion could protect valuable data.

TrueCrypt attempts to provide plausible deniability by allowing users
to create hidden encrypted volumes that are designed to be undetectable
to an adversary obtaining physical access. Hidden volumes are created
by placing a TrueCrypt-encrypted volume within the free space of another
TrueCrypt volume, without modifying any of the outer volume’s metadata.
With TrueCrypt, all free space is initialized with random data, so the
existence of a hidden encrypted volume, which is indistinguishable from
random data, is impossible to prove. When confronted with an adversary
demanding the password to decrypt TrueCrypt volumes, the password for
the outer volume can be revealed, knowing that the existence of the hidden
volume will remain undetected. To decrypt this hidden volume, a user
instructs TrueCrypt to attempt to detect a hidden volume encrypted using
a given password. If the corret password is given and there is in fact a
hidden volume, a TrueCrypt volume header will be properly decrypted

481

482

Chapter 9. Security Models and Practice

and verified, giving that user access to the data. If an incorrect password is
given or there is no hidden volume, TrueCrypt will fail to decrypt a valid
header and indicate that a hidden volume could not be found.

While the design of hidden volumes in TrueCrypt is sound, the op-
erating system or applications that access files in a hidden volume may
leave traces of the use of the hidden volume, thus compromising plausible
deniability. Examples include shortcuts to recently open files in Windows,
temporary backup files created by Microsoft Office applications for crash
recovery, and indices and snapshot files created by Google Desktop.

BitLocker

Some versions of Windows provide a disk-encryption technology known as
BitLocker. Like TrueCrypt, BitLocker encrypts disk sectors with symmetric
encryption, specifically AES. To decrypt a volume, the user has several
options. A password can be provided at boot time via keyboard, or a
decryption key can be loaded from a USB device or a Trusted Platform
Module (TPM), which we discuss below.

BitLocker makes use of two NTFS formatted volumes, one containing
the operating system and data that is to be encrypted, and another to be
used as an unencrypted boot volume. When the user authenticates at
boot time, the volume master key is unlocked. Using this key, BitLocker
decrypts the full-volume encryption key, which is stored encrypted on the
boot volume. This key is then kept in memory and used to decrypt the data
on the encrypted volume.

9.7.3 Trusted Platform Module

The Trusted Platform Module (TPM) is a chip designed to be mounted
on the motherboard for use as a secure cryptoprocessor that can securely
generate and store cryptographic keys. Each TPM chip has a unique RSA
private key burned into the hardware at the time of production. The TPM is
designed to be tamper-resistant, so this key is hard to recover by attackers
with physical access.

TPM chips feature several platform configuration registers (PCRs),
which are used to store keys and ciphertexts for several cryptographic
operations.

e The extend operation updates the value of a specified PCR with a
cryptographic hash of the previous value of that PCR concatenated
with data provided to the operation.

9.7. Secure Storage

e The seal operation encrypts a supplied plaintext with the TPM pri-
vate key and associates it with the current contents of a specified PCR.
The operation returns the ciphertext, as well as a MAC computed
from the current value of the specified PCR and the TPM private key.

e Given a ciphertext, a hash value, and the name of a PCR, the unseal
operation decrypts the ciphertext only if computing the MAC of the
current value of the PCR yields the given hash value.

Collectively, these operations allow hardware and software compo-
nents, including the BIOS, bootloader, operating system, and applications,
to bind secret data to the TPM that can only be extracted if the state of the
machine is identical to when the data was stored.

For example, BitLocker can use the TPM as a means of guaranteeing
the integrity of trusted operating system components before decrypting
the contents of the hard drive. First, the TPM is initialized by performing
the extend operation to initialize specific PCRs to capture the desired state
of the BIOS, bootloader, kernel, and other trusted components. Next,
the volume master key is sealed to the values of these PCRs and stored.
On booting, the operating system repeats these extension operations, and
attempts to unseal the key to decrypt the BitLocker drives. If any of the
trusted system components have been altered, the state of the PCRs will
differ from when the seal operation was performed, and the TPM will not
unseal the volume master key. The TPM can also be used for a number
of other cryptographic applications, including digital-rights management
(Sections 10.4.1-10.4.2) and software licensing (Section 10.4.3).

Using at TPM to store the volume master key increases the usability of
BitLocker since the user does not have to enter a password or insert a USB
token. However, this mode of operation for BitLocker is vulnerable to the
cold boot attacks described in Section 2.4.5.

Also, while the TPM is designed to be impervious to physical tamper-
ing, an attack was presented in 2010 by security researcher Christopher
Tarnovsky. In his attack, Tarnovsky applied acid and rust remover to
remove the outer shell and several layers of mesh wiring, exposing the
chip’s core. Then, by carefully using a microprobe to tap communication
channels in the chip’s core, he was able to extract CPU instructions and
recover protected information from the TPM. While this attack may suggest
that the TPM may not withstand determined attackers with physical access,
Tarnovsky’s approach was highly technical and required many months
of patient work. As such, it may be infeasible for even sophisticated
attackers to compromise the chip, but Tarnovsky’s attack may provide the
groundwork needed to make defeating the TPM more feasible in the future.

483

484 Chapter 9. Security Models and Practice

9.8 Exercises

For help with exercises, please visit securitybook.net.

Reinforcement

R-9.1
R-9.2

R-9.3
R94

R-9.5

R-9.6
R-9.7

R-9.8

R-9.9

R-9.10

R-9.11

R-9.12

What are the five components of a security policy?

Describe the differences between discretionary and mandatory
access-control policies.

What are the four components of a trust management system?

Consider a variation of the Bell La Padula model that does not have
the *-property. Which security vulnerabilities arise?

What are the components of a total order and which one is missing
in the definition of a partial order?

Compare and contrast the Biba model and the BLP model.

What is the difference between the Chinese wall model and the
Brewer and Nash model.

Explain the difference between white-box and black-box assess-
ments.

What types of records are protected under HIPAA? What about
FERPA?

Describe how network segmentation might be used by system
administrators to provide additional security.

What are some of the advantages of dynamic-analysis techniques
over static-analysis techniques?

What are the types of tickets and servers used in Kerberos?

Creativity

C9.1

C9.2

Draw a diagram for a partial order and show that there are at least
two total orders that include the same relationships.

UFO enthusiasts believe there might be as many as 38 classification
levels above “top secret,” which are so secret that people without
those clearances can’t even know their names. Give a reason why
such classifications might be necessary for handling UFO related
information and give some plausible names for such classification
levels.

9.8. Exercises 485

C-9.3 Describe an application suitable for the BLP model but not for the
RBAC model.

C-9.4 Describe a situation where security levels for conflicts of interest
would be important.

C-9.5 Compare the BLP model with the RBAC model.

C-9.6 Design a data structure for representing a hierarchical RBAC sys-
tem and describe the algorithm for checking whether a user can
access a resource. Analyze the space used by the data structure
and the running time of the algorithm.

C-9.7 Briefly describe your own security standard for computer systems.
What properties are most important? How can these security
properties be regulated and monitored?

C-9.8 If an administrator discovers a vulnerability in his or her system,
who should he tell? Should he make the vulnerability public? Why
or why not?

C-9.9 White-hat testing is a set of vulnerability tests that are designed to
be used by system administrators to uncover system vulnerabilities
so that they can be fixed. Describe some white-hat system and
network tests and describe some specific vulnerabilities that they
are designed to discover.

C-9.10 Why does Kerberos need two types of tickets and two types of
servers?

Projects

P-9.1 Implement a system for controlling access to a collection of web
pages based on the BLP model.

P-9.2 Implement an RBAC system for controlling access to the pages of a
web site.

P-9.3 Write a simple static-analysis tool for detecting potential vulnera-
bilities in source code.

P-9.4 With permission, conduct a simulated penetration test on a virtual
machine network. Develop a full methodology, perform the audit,
and present formal results.

P-9.5 Choose a piece of open source software with published vulnerabil-
ities. After downloading the source code, identify the vulnerable
code and develop a security advisory describing the bug, its sever-
ity, and other relevant information.

486

Chapter 9. Security Models and Practice

Chapter Notes

Most of the standards, specifications, and formal documents described in this
chapter are available online:

e TCSEC: csrc.nist.gov/publications/history/dod85.pdf

e Common Criteria: www.commoncriteriaportal.org/thecc.html

e FIPS 140 csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

e HIPAA: www.hhs.gov/ocr/privacy

e FERPA: www.ed.gov/policy/gen/guid/fpco/ferpa

e Data Protection Directive: ec.europa.eu/justice_home/fsj/privacy
e SOX: pcaobus.org

o TPM: www.trustedcomputinggroup.org/resources/tpm_main_specification

They KeyNote trust management system, developed by Blaze, Feigenbaum, Ioan-
nidis, and Keromytis, is described in RFC 2704. The Bell-La Padula model is
described by its designers in a 1973 MITRE technical report [3]. Likewise, the
Biba model is also described by its designer in a MITRE report [5]. The Brewer
and Nash Chinese-wall model is presented in a 1989 paper [14]. Our description
of the RBAC model follows the paper by Ferraiolo et al. [32] (see also the book
by by Ferraiolo et al. [31]). The Kerberos protocol is based on a classic paper
by Needham and Schroeder on establishing secure communication between two
parties who share secret keys with a trusted third party [64]. For additional
information on the concepts and implementation details behind Kerberos, see the
book by Garman [35]. The Ponemon Institute (ponemon.org) has studied the cost
of data breaches, including those caused by lost laptops. Information leakage
by the operating system or applications that may compromise TrueCrypt hidden
volumes has been investigated by Czekis et al. [21].

